Переносчики мыслей

Сразу уточним, что ни электроны, ни ионы вдоль аксонов (нервных окончаний) не бегают. Природа решила задачу по-другому: перемещается изменение разности потенциалов. Ионы не летят от клетки к клетке — так не удалось бы достичь нужной скорости, — а „по команде“ пересекают мембрану.
В состоянии покоя между внутренней и внешней средой нейрона существует разность потенциалов („пси“) — около 75 мВ (минус внутри). Двуслойная липидная мембрана не проводит ток и неохотно пропускает заряженные частицы. Концентрация К+ внутри аксона в десятки раз выше, чем вне его. Ионы калия утекают из клетки по градиенту концентрации, но внутри остаются соответствующие им анионы (отрицательно заряженные белки, нуклеиновые кислоты и другие), которые из-за своей величины клетку покинуть никак не могут. Поэтому концентрации К+ внутри и снаружи не выравниваются окончательно. А снаружи много больше ионов натрия и хлора. Ионы натрия проходят через мембрану совсем уже трудно, зато ионы хлора стремятся внутрь и тем самым ещё увеличивают отрицательный заряд внутри. (Избыток К+ внутри и Na+ снаружи возникает не сам собой, его создает специальный белковый комплекс — Na+, К+–АТФаза, или натриевый насос, который за счёт энергии АТФ гонит ионы калия внутрь, а натрия — наружу.)
Электростимуляция нерва вызывает перемену знака потенциала: ионы натрия устремляются внутрь. (Входят они не где попало, а через другие специальные каналы.) Если хотя бы на небольшом участке мембраны ψ достигает значения –50 мВ, мембрана открывается для Na+, и значение потенциала почти мгновенно изменяется до +30 мВ. Затем проницаемость мембраны снова падает, и насос восстанавливает статус — кво; вся процедура занимает около миллисекунды. Вот этот скачок и называется потенциалом действия. Самое интересное — мембрана аксона устроена таким образом, что эта „волна“ направленно распространяется по ней с высокой скоростью: перемена потенциала на одном маленьком участке разряжает соседний. У позвоночных с целью увеличения скорости передачи сделано ещё одно усовершенствование: аксон покрыт изолирующей миелиновой оболочкой, в которой есть разрывы (так называемые перехваты Ранвье), и возбуждение переносится большими скачками, от разрыва к разрыву.
От клетки к клетке сигнал передаётся способом, который схемотехнику не приснится в кошмарном сне. Место контакта нейронов — синапс: пресинаптическая мембрана (клетки-передатчика), постсинаптическая мембрана (клетки-приёмника) и щель между ними шириной около 20 нм. Когда в нервное окончание прибывает очередной импульс, пресинаптическая мембрана деполяризуется и становится проницаемой для ионов кальция. Их вхождение запускает следующий этап. К пресинаптической мембране изнутри причаливают пузырьки со специальным веществом — нейромедиатором. (Иногда эти вещества ещё называют нейротрансмиттерами.) Пузырьки открываются наружу, и медиатор выплёскивается в синаптическую щель. А на постсинаптической мембране есть рецепторы, на которые садятся молекулы медиатора. После этого уже в постсинаптической мембране открываются каналы, и она деполяризуется или гиперполяризуется — смотря по тому, какие каналы. В возбуждающих синапсах открываются калиевые и натриевые каналы, так что ионы натрия входят в клетку, а ионы натрия выходят — мембрана деполяризуется. В тормозных синапсах открываются каналы для ионов калия и хлора, что приводит к гиперполяризации. Диффузия медиатора через синаптическую щель занимает около 0,5 мс.

Кроме химических синапсов, описанных выше, есть и электрические. Импульс проходит по такому синапсу напрямую, без химических посредников, поскольку ширина синаптической щели там всего 2 нм (в химическом синапсе — в десять раз больше). Однако у позвоночных основную роль всё же играют химические синапсы. Это сложное электротехническое устройство обладает многими полезными качествами, среди которых однонаправленность передачи (пре- и постсинаптическая мембраны не могут поменяться ролями) и способность с одинаковой силой передавать сильный и слабый сигналы.
Первые медиаторы были открыты в начале XX века, а представление о них как о веществах-посредниках сформировалось в 40-50-е годы. В первую очередь следует, наверное, назвать ацетилхолин и норадреналин. В 1914 году Генри Дейл опубликовал свои работы, в которых показал, что ацетилхолин действует на органы животных так же, как импульсы парасимпатических нервов: вызывает сокращения гладких мышц полых органов, расширяет сосуды. И в самом деле, шестью годами позже Отто Леви выделил его из окончаний парасимпатического нерва в сердце лягушки. В 50-е годы Джон Экклс доказал, что ацетилхолин передаёт нервные импульсы в мозгу. На ацетилхолине работают синапсы вегетативной нервной системы, мотонейроны, иннервирующие скелетные мышцы, а также некоторые отделы ЦНС, например ретикулярная формация, ведающая памятью и вниманием. Важно иметь в виду, что сами по себе медиаторы не обладают возбуждающим или тормозящим эффектом: он зависит от устройства синапса, в частности, от того, какие каналы открываются при связывании медиатора с рецептором. Например, ацетилхолин в большинстве синапсов оказывает возбуждающее действие, но вызывает торможение в нервно-мышечных соединениях сердца и висцеральной мускулатуры.
Кстати, до сих пор мы не упомянули ещё одно важное действующее лицо: фермент, который расщепляет медиатор, когда он больше не нужен. Например, ацетилхолинэстераза на постсинаптической мембране, как нетрудно угадать, инактивирует ацетилхолин, а моноаминооксидаза — норадреналин, дофамин и серотонин, о которых речь пойдёт дальше. Передать сигнал мало: надо ещё уметь его вовремя выключить…
Норадреналин вместе с адреналином синтезируется в мозговом слое надпочечников. В 1904 году Т.Р. Эллиот, выделив из надпочечников адреналин, показал, что он действует на сосуды и органы подобно симпатическому нерву: снижает тонус гладких мышц, сужает сосуды, учащает сокращения сердца. Про норадреналин мы рассказывали в заметках о гормонах. Действительно, это вещество — и гормон, и нейромедиатор. На мозг млекопитающих он оказывает возбуждающее действие. Кстати, норадреналиновые рецепторы на постсинаптических мембранах похожи на адренорецепторы других клеток, например эритроцитов. Это к вопросу о родстве между двумя способами передачи информации в организме…
Норадреналин относится к группе катехоламинов — сигнальных молекул, синтезируемых из аминокислоты тирозина. Ещё один важный член этой группы — дофамин. Он служит медиатором одного из крупных проводящих путей, который участвует в центральном контроле движений. С дофамином связана Нобелевская премия 2000 года.
Серотонин образуют нейроны в гипоталамусе (одном из важнейших участников системы, которая координирует вегетативные функции с психическими и соматическими — например, регулирует метаболизм, работу пищеварительной, эндокринной, сердечно-сосудистой систем в соответствии с нуждами организма) и стволе мозга. Этот медиатор связан со сном и сенсорным восприятием. И серотонин, и расщепляющая его моноаминооксидаза — ключевые фигуры в лечении нервных заболеваний, расстройств сна, алкоголизма и наркотической зависимости.
Гамма-аминомасляная кислота (ГАМК) — медиатор покоя, главный в количественном отношении тормозной медиатор. При сигнале от него мембрана нейрона-приёмника гиперполяризуется за счёт проникновения внутрь ионов хлора, так что разрядить её становится труднее. Однако в спинном мозге и в структурах ствола мозга главный тормозной медиатор другой — простейшая аминокислота глицин.
Из того факта, что передача нервных импульсов основана на химии, неопровержимо следует другой: химические вещества могут помогать работе нервной системы, могут мешать ей или перенастраивать по-своему. Различные психотропные препараты — нейролептики, которые ранее также назывались „большие транквилизаторы“, применяемые при психозах, собственно транквилизаторы, они же седативные средства или анксиолитики, антидепрессанты, психостимуляторы, — все они так или иначе связаны либо с медиаторами, либо с рецепторами, либо с ионными каналами. Скажем, антидепрессант имизин — ингибитор моноаминооксидазы. Снотворные из группы барбитуратов, например веронал, широко распространённый в начале XX века (именно с помощью этого препарата в 1927 году совершил самоубийство известный японский писатель Акутагава Рюноскэ), стимулируют действие ГАМК.
Где лекарства, там и яды, и наркотики. Антагонист серотонина — диэтиламид лизергиновой кислоты, более известный как LSD: он, возможно, связывается с другим участком того же рецептора. Никотин, взаимодействуя с постсинаптической мембраной, воспроизводит действие ацетилхолина. (Теперь понятно, почему с привычкой к курению так трудно расстаться?) Яд кураре блокирует действие ацетилхолина на постсинаптической мембране в нервно-мышечном синапсе. А вот ботулотоксин, напротив, препятствует высвобождению ацетилхолина из пресинаптической мембраны. За счёт этого и возникают симптомы отравления. Кстати, дамам, покупающим модные сегодня кремы для лица с префиксом „бо“, имеет смысл поинтересоваться составом: вполне возможно, что крем содержит этот самый токсин ботулизма. А услуга, известная в косметических салонах под названием „ботокс“, предполагает инъекции этого же вещества в район мимических мышц. Действительно: нет проведения в ацетилхолиновых рецепторах — нет сокращений мелких мышц лица — нет морщин. Радикальный способ решения проблемы!
Нельзя не признать, что в самом понятии „нейрохимия“ есть нечто жуткое. И не только из-за наркотиков. Многим кажется неприятным, что человеческие дух и мышление основаны на химии, причём на той же самой, что и сокращения мышц, и вегетативные функции организма. Но может быть, это не так уж и плохо. Во-первых, материальность носителя информации делает возможным его ремонт. А во-вторых, как известно, содержание записи не зависит от способа, которым она сделана…
Опубликовано 01 апреля 2021
| Комментариев 0 | Прочтений 282
Ещё по теме...
Добавить комментарий
Из новостей
Периодические издания
Электронный журнал:
